
Semantic Web Service Composition by Consistency-based Model Refinement

Rajesh Thiagarajan Markus Stumptner Wolfgang Mayer
Advanced Computing Research Centre
University of South Australia, Adelaide

{cisrkt,mst,mayer}@cs.unisa.edu.au

Abstract

Modelling complex processes in the Service Oriented Ar-
chitecture paradigm typically requires the composition of a
number of simpler services to achieve a desired goal. We
present a semantic service composition approach that is
based on the use of UML activity diagrams as abstract spec-
ification language and propose a service selection process
that combines both conceptual and instance-level analysis
to locate suitable services. Model-driven principles allow
to adhere to design requirements that would otherwise be
difficult to incorporate in formal composition frameworks.
Explicit modelling of behaviour in the presence of failures
permit to create workflows that are robust in case of service
execution errors observed at run-time. This approach may
allow to synthesise concrete service orchestrations that are
superior to similar approaches purely based on type-based
or conceptual matchmaking.

1. Introduction

Pre-planning and manual combination of web services
into complex structures is a significant bottleneck on the
way to establish dynamic interactions and interoperability,
an ability which is one of the main perceived advantages
of the service-oriented approach over other paradigms. The
goal of providing automated support for web service dis-
covery and composition has led to the development of
advanced service description approaches that employ lan-
guages which permit defining not just inputs and outputs
but also parts of the semantics of the service.

Model Driven Architecture (MDA) offers an abstract
framework which can be used to define, in a platform neu-
tral fashion, the various aspects of a system design. The Ob-
ject Management Group (OMG) recognises UML as a com-
prehensive system design paradigm. Using MDA-based ap-
proaches to assist human comprehension while authoring
service descriptions or composing web services is partic-
ularly useful since it abstracts the (generally) verbose se-
mantic web formalisms [6, 14]. The effectiveness of using

activity diagrams to specify control flow and using a ser-
vice matchmaker to generate concrete workflows has been
demonstrated in [6], where suitable services are located by
using input and output (IO) types.

While type-based matching allows to eliminate some ser-
vices from consideration, in general, a large number of in-
appropriate services may remain. For example, a request
for a book seller service, which takes in a book ID (integer)
and a return availability information (string) will be indis-
tinguishable from all services that have the same set of IO
parameters. This problem has led to the development of
semantic-based matching proposals, where service requests
and aspects of a service’s functionality are represented for-
mally and suitable services are identified by logical infer-
ences [8, 12, 9].

In this paper, we propose a MDA-based composition ap-
proach where abstract workflows describing users’ business
processes and abstract requirements in an implementation-
independent fashion are refined into concrete workflows
that are suitable to automatically synthesise and monitor
service execution. In contrast to previous work, our match-
ing process utilises both conceptual and instance-level in-
formation about services to assess whether a service satis-
fies given requirements. We demonstrate that our frame-
work complements existing Description Logics (DL) based
service selection and allows to synthesise workflows that
supersede those derived by purely conceptual matchmak-
ing.

The paper is organised as follows: In Section 2, we
present an introduction to MDA-based techniques for the
semantic web and motivate the need for a semantic service
composition process. Section 3 introduces the notion of
consistency-based service discovery, followed by a descrip-
tion of our constraint-based matching framework in Sec-
tion 4. Section 5 illustrates the approach on an example.
In Section 6, related works are discussed and our contribu-
tions and conclusions are summarised in Section 7.

2. MDA and The Semantic Web

Model-driven principles have been widely advocated in
the software development context, as incremental mod-
elling of complex systems potentially allows to carry out the
modelling process in a systematic way and reduce the com-
plexity of the modelling tasks. Abstractions of the various
physical system artifacts facilitates a platform independent
design process.

We propose to extend MDA-based techniques to the de-
velopment of service oriented systems, since abstractions of
platform and service specific implementation details under-
lying the semantic web may allow to build complex ser-
vices more effectively. Furthermore, formalisms already
well-known in the software engineering community may al-
low to leverage already established languages and notations
and to abstract from specific formalisms in the Web Service
domain. Overall, the model-driven approach may allow to
incrementally refine specifications of service orchestrations
from the business level down to concrete implementations.
Compared to other modelling approaches, such as Petri-nets
and BPEL, the use of widely accepted modelling languages
may allow a larger community to be involved in the design
processes, as well as reducing the effort required to build
adequate service descriptions. Furthermore, since UML is
likely to be used within most application development pro-
cesses, our extensions may utilise tools and frameworks that
are already deployed. In this paper, UML activity diagrams
are employed to model abstract workflows and OCL is used
to represent the various requirements of the abstract work-
flow.

In the proposed framework, the composition process be-
gins with the design of an abstract workflow (Figure 1).
An abstract workflow consists of a specification of the con-
trol flow between abstract services. An abstract service is
a placeholder for one or more concrete services, where re-
quirements and preferences imposed are described as con-
straints on an implementation-independent level. Our ser-
vice refinement approach guarantees that the services se-
lected in the concrete workflow synthesised from its abstract
counterpart adhere to all constraints given on the abstract
level.

For example booking a hotel room could be a functional
requirement of an abstract service. In addition, the work-
flow can then be augmented with global (non-functional)
requirements and preferences, such as constraints limiting
the total costs of a transaction, or preferences for services
available from a particular vendor or in a certain geograph-
ical region.

Since our workflow specification is based on UML Ac-
tivity Diagrams, the Object Constraint Language (OCL) is
well-suited for expressing abstract requirements and con-
straints. OCL was originally introduced as a language to
represent semantics that are not easily captured through the
various diagram notations in UML. OCL has been advo-

{s.oclIsKindOf(SalesService),
 s.oclAsType(SalesService).
 item.oclIsKindOf(Ticket),
 s.oclAsType(SalesService).price < 200,
 s.creditLevel > 5}

{s.oclIsKindOf(SalesService),
 s.oclAsType(SalesService).
 item.oclIsKindOf(Ticket),
 s.oclAsType(SalesService).price < 600,
 s.oclAsType(SalesService).price < 1000}

{s.oclIsKindOf(SalesService),
 s.oclAsType(SalesService).
 item.oclIsKindOf(Ticket),
 s.oclAsType(SalesService).price < 200,
 s.creditLevel > 5}

{(s1.oclAsType(SalesService).price +
 s2.oclAsType(SalesService).price +
 s3.oclAsType(SalesService).price)
 < 700}

Figure 1: Abstract Workflow Specification

cated as a promising alternative to the traditional semantic
web formalisms for representing declarative service seman-
tics and service functionality [11].

We present a MDA-based composition process that be-
gins with an abstract model of a workflow that speci-
fies the control flow between abstract activities, functional
and other requirements of abstract services, and additional
global requirements and preferences that may influence the
refinement process. This abstract workflow specification is
subsequently refined into a concrete implementation, where
each abstract service is replaced with a concrete service sat-
isfying the constraints on the abstract level. Throughout the
refinement step, both conceptual as well as instance-level
properties of services are taken into account to ensure that
the best matching service is selected for execution. As a re-
sult, a concrete instance of the abstract workflow is obtained
that can be used to synthesise a program that executes and
monitors the service composition. In case the requirements
posed on the abstract level cannot be satisfied by a concrete
implementation, if, for example, no combination of services
is able to satisfy the given specification, this is indicated to
the user who is prompted to relax the given specification.

Formally, the abstract workflow model and its con-
straints are established by extensions to the UML meta-
modelling framework. Extension mechanisms in UML,
such as profiles, provide platform to extend the UML meta-

UML Activity
 Node

Abstract Web
 Service

Basic platform independent
 meta definition of an UML activity

UML activity Node augmeneted
 with requirements (R)

[jetStar service]
 Book Ticket

Concrete web service that satisfies
 the requirements R

M
O
D
E
L
I
N
G

S
P
A
C
E

INSTANCE

Figure 2: Meta Model Extension

model to include application specific modelling elements.
Our proposed extension of the UML meta-model describ-
ing activity diagrams is shown in Figure 2. A meta-layer
between UML activity diagram meta-model and its instance
layer is introduced, where the elements specific to our
framework are anchored. Abstract services are obtained by
specialisation from the generic Activity node element in the
meta model, such that each node may be annotated with ad-
ditional requirements.

Requirements in general represent the functionality or
the capabilities that are desired for a particular web service.
Individual requirements may represent particular services
requested, property value restrictions, QoS requirements,
or user preferences. All abstract service requirements are
modelled in OCL. This allows to leverage existing UML
modelling tools for modelling, versioning and to carry out
certain model transformations.

3. Consistency-based Service Discovery

Given a formal specification of the requirements of a
workflow or individual services, suitable concrete services
must be located that are able to fulfil the requested func-
tionality. While early approaches were mainly relying on
user-specified informal keywords [4] and types of input and
output parameters [9] of a service, these approaches become
less effective if a diverse set of services stemming from dif-
ferent sources is to be considered. In particular, syntactic
and type-based matching approaches are vulnerable if ser-
vices use similar type signatures but provide entirely differ-
ent services. In such scenarios, semantics based annotation
and matching frameworks are required to obtain suitable
results. Foremost, a number of matchmaking algorithms
based on conceptual inferences formalised in Description
Logics (DL) have been proposed.

While considerable advances have been achieved using
purely conceptual inferences, the abstraction inherent in
service profiles and request queries makes it difficult to as-
certain whether a matching service will indeed be able to
satisfy a given requirement. Furthermore, the result of the
matching process heavily depends on the level of abstrac-
tion that is used to write profiles and queries. Different no-
tions of service matches have been proposed [?] to partially
overcome some of the difficulties, but remain unsatisfactory
to a certain degree due to incompleteness and abstraction in
service profiles.

For example, the fact that a service advertises the capa-
bility to sell books does not necessarily imply that it will
be able to supply all book titles. Similarly, the same pro-
file may or may not match a request for the more specific
concept novel, depending on the matching algorithm being
used.

To overcome these limitations, we propose a staged
matching process, where conceptual matching is performed
to identify a set of potentially matching concrete services
that are subsequently queried at the instance level to ascer-
tain if the given service is indeed able to meet the desired
requirement. Note that our approach may be employed on-
line by means of directly querying a concrete service via its
publicly available API, as well as off-line, where a database
stating the precise capabilities of a service is used to con-
firm or refute a particular query. Note that while the profile
at the conceptual level may contain abstract concepts and
omit many details of a service’s capabilities, it is assumed
that the concrete instance-level profile contains a specifi-
cation that is precise enough to definitely answer a query.
This allows to apply the closed world assumption, such that
if a particular service instance cannot be shown to definitely
match a given requirement, a mismatch is assumed and an-
other concrete service must be found.

The service discovery process proposed in this work is
based on the notion of logical consistency between a ser-
vice profile P and a service requirement R: P is consid-
ered a potential match for R iff P ∧ R is satisfiable. It
is assumed that the service profiles and requirements have
been translated from OCL into an equivalent representation
in FOL [3].

In contrast to the stronger equivalence, subsumption or
plugin matches [8], consistency as the basis for matching
provides the advantage that a service profile P is consid-
ered a potential match for a request R if P may satisfy R.
A disadvantage of this criterion is that more matches may be
returned. To counter this problem, the instance-level match-
ing phase eliminates services which cannot provide a re-
quested service. While some aspects of this type of reason-
ing can be achieved by translating aspects of instance-level
service profiles to the conceptual level, the large number of
concepts and axioms required is beyond the capabilities of
existing DL reasoners.

For example, consider a service profile that advertises

Interactive Composer

Consistency-based
 Matchmaker

E
N
V
I
R
O
N
M
E
N
TRanked

Composition
List

Comp #1
...
Comp #n

Concrete
Workflow
 #1

Abstract
Workflow
Editor

Figure 3: Composition Process

that a particular service sells airline tickets between Aus-
tralian cities. While there may be a number of services
(e.g. Travel agencies) that can indeed provide tickets for any
combination of cities, some services may provide this ser-
vice only between particular destinations. Yet, at a concep-
tual level, it would not be unreasonable to advertise this ser-
vice as providing tickets between Australian cities. There-
fore, such services would match a given query even for des-
tinations where the service will not be adequate. However,
this fact will not be provable on the conceptual level. In
this case, the service instance must be queried to ensure the
destinations in question are actually available.

The overall architecture of our model-driven develop-
ment framework is shown in Figure 3. Given an abstract
workflow and requirements developed in a standard UML
development environment, a consistency-based refinement
process is carried out, leading to a set of concrete service
orchestrations. Since we aim at a platform-independent ar-
chitecture, the services that are available for instantiation by
the consistency-based matchmaker are represented as an ab-
stract Environment, which provides service profiles to drive
the discovery process. Here, existing technologies such as
OWL-S, BPEL, and UDDI may be employed as underly-
ing implementation platform. As a result, a set of concrete
workflows with instantiated services is obtained and pre-
sented to the user.

While consistency-based matchmaking is well-suited to
consider “firm” constraints, “soft” user preferences that
may be violated to obtain a solution require complemen-
tary approaches. For simplicity, we abstain from defining
our own ranking framework to order different solutions and
utilise existing work on recommender systems [1] to pro-
vide adequate ranking functions, taking into account user
preferences specified in the abstract workflow.

4. Constraint-based Service Discovery

Constraint-based systems, which have been successfully
applied to a number of large-scale industrial problems, are
also useful in the web service composition context. Previ-
ous works, in particular [2, 7], have examined the feasibility
of using constraint-based systems to address the web ser-
vice composition problem. While [2] provided a constraint-
based workflow design based on input and output compati-
bilities, [7] provided an optimised approach taking into ac-
count simple attributes of services.

The need for a matchmaking process that filters web ser-
vice candidates based on the functionality a web service
offers has already been established. However, the previ-
ous constraint-based proposals do not consider semantics
such as functionality of a web service while performing
candidate selection. In this section, we present our MDA-
based service composition approach, formalised in terms of
a constraint-based system to generate concrete workflows
for any given abstract workflow.

In difference to previous work, where similar services
were implicitly assumed to require the same set of IO pa-
rameters, our generative formalism allows to tolerate dif-
ferences in IO signatures between services providing simi-
lar functionality. This allows to adapt the control and data
flows devised from an abstract workflow, leading to more
flexible refinements and the possibility of compensating for
failures detected at run-time by reconfiguring the remaining
orchestration.

The profile of a service is an advertisement of the capa-
bilities and properties that a service claims to offer. A pro-
file is formalised using a set of constraints over attributes of
the service. The constraints in a profile P should be satis-
fied by all the concrete service instances sharing P .

Definition 1 (Service Constraint) A service constraint p
is defined as a pair p = 〈A,C〉 where A is a set of attribute
names corresponding to instance-level properties of a ser-
vice and C is a set of constraints specifying the conceptual
properties of a service. A service constraint q = 〈A′, C ′〉
specialises p iff A ⊆ A′ and C ⊂ C ′.

In this paper, it is assumed that the constraint language used
to express constraints in p = 〈A,C〉 is OCL restricted to
using only attribute names in A. The semantics of a set of
constraints C = {c1, . . . , cn} is given by the conjunction
c1 ∧ . . . ∧ cn. As mentioned previously, this subset of OCL
can be translated to FOL to allow efficient inferencing [3].

The notion of service constraint can be used to define
service profiles as well as service requests.

Example 1 A sales service profile p to advertise sales of
some kind of Book at a price of at-most $30 is modelled as
A = {item, price}
C = {item.oclIsTypeOf (Book), price ≤ 30}. The same

service constraint could be interpreted as request for a ser-
vice selling books worth not more than $30.

All the concrete services that use a profile p as their ad-
vertisement should satisfy C. Intuitively all the services that
advertise p are services that sell some kind of Book worth
at-most $30.

The difference between concept-level and instance-level
profiles is given by the constraints in C. While complex
predicates and relations are permitted on the conceptual
level, instance level profiles are restricted to equality con-
straints on property values.

While profiles at the instance level describe precise ser-
vice attributes that cannot be specialised further, concep-
tual profiles may represent abstract specifications that allow
more than one specialisation to obtain a concrete service.
The hierarchy of profile descriptions forms a lattice struc-
ture, with > denoting the completely unconstrained profile
and ⊥ representing an infeasible profile.

To discover advertised services, we assume that a reg-
istry (e.g., UDDI or semantic registry) exists that publicises
service profiles. To abstract from implementation details,
we define an abstract environment:

Definition 2 (Environment) An environment E is defined
as a tuple 〈S, EC , EI〉where, S is a set of concrete services,
EC is the set of conceptual service profiles for services in S,
and EI denotes the set of instance level profiles over S.
Let users(p) ⊆ S, p ∈ EI , denote the set of services that
conform to instance-level profile p.

All concrete services in an environment are associated
with a single profile in EC and EI , respectively. Despite the
similarity of instance level profiles and concrete services,
a profile may be associated with more than one service in
case equivalent (replicated) services exist that provide the
same functionality. An example environment for our busi-
ness travel workflow is presented in Figure 4.

Consistency-based candidate selection requires to re-
trieve a set of concrete services such that their conceptual
or instance level profiles satisfy a given service request R.
Formally, we define an entailment relation |= to ascertain
whether a profile in the environment matches a given ser-
vice request:

Definition 3 (Satisfying Profile) A service profile p =
〈A,C〉 ∈ EC ∪ EI satisfies a service request r = 〈A′, C ′〉
iff

C ∧ C ′ 6|= ⊥

That is, a profile p potentially satisfies a request r if p or one
of its feasible specialisations satisfy r. If p ∈ EI , then it can
be established precisely whether p satisfies r, assuming that
the constraints in r are limited to attributes in p; otherwise,
a common model q of both p and r may exist, but q 6∈ EI ∪
EC .

Definition 4 (Abstract Workflow) An abstract workflow
is defined as a tuple 〈N, ε, Ω, T 〉 where N = A∪V denotes
a set of nodes, A denotes the set of abstract services, V
represents the set of control nodes and T ⊆ N ×N ×L de-
notes labelled transitions between elements in N , where L
denotes a set of OCL constraints representing the transi-
tion condition. The set Ω ⊆ V represents the set of final
states with no outgoing transitions, whereas ε ∈ V denotes
the unique initial state. The control nodes in V represent
choice and fork nodes in the workflow’s control structure.

Each abstract service is associated with an (abstract) service
request that restricts the services that may be used to spe-
cialise the workflow. In this work, only acyclic workflows
are considered.

For simplicity, we assume the initial and final states are
represented as auxiliary services. While the initial state is
associated with a profile that supplies the input parameters
of the workflow, each final state represents a possible ter-
mination point of the workflow. Since multiple exit points
may be defined, different requirements on normal comple-
tion, that is global requirements on the entire workflow, as
well as failure conditions may be specified. This allows to
restrict the refinement process to services that conform to
desired behaviour in case of failures.

Starting at the requirements associated with terminal
states Ω in a workflow, the requirements stated for indi-
vidual abstract services are inferred by propagating require-
ments backwards along transitions. For each transition t
that is traversed, the requirements are amended with the
transition condition associated with t. For choice nodes, the
disjunction of the requirements propagated from the outgo-
ing transitions are propagated along the incoming transition.
Combined with local requirements and preferences associ-
ated with an abstract service, the resulting abstract service
request is used to select suitable specialisations for service
nodes in the workflow. The profile associated with the input
node of the workflow must meet the requirements propa-
gated to the node. For nodes representing abstract services,
aspects of the requirements that are satisfied by a matching
service profile are removed from the requirements propa-
gated further. If no match can be found, the most com-
prehensive requirement > is propagated. If the input node
cannot meet its requirements, no solution exists and a dif-
ferent refinement alternative is considered. If no consistent
refinement is found, the user is notified and given the op-
portunity to relax the workflow specification. Formally, the
propagation algorithm can be implemented in the open con-
straint satisfaction framework proposed in [5] or the gener-
ative CSP framework used in large-scale configuration sys-
tems [2, 10].

As outlined in previous sections, the service selection
process is performed iteratively: first, the requirement
constraints r are used to identify potential matches with
concept-level profiles in EC in a given environment. Match-

EService

SalesService

BookSalesService
item.oclIsTypeOf(Book)

AirlineTicketService
item.oclIsTypeOf(Ticket)

HotelBookingService
item.oclIsTypeOf(RoomBooking)

PCSalesService
item.oclIsTypeOf(PC)

BudgetHotelBooking
price <= 200

StandardHotelBooking
price > 200 and price <= 800

LuxuryHotelBooking
price > 800

DiscountAirlineBooking
price <= 150

EliteAirlineBooking
price > 150

Uni
Lodge

YHA

Park
 Inn

Rex

Bay
View

Pacific

Hyatt
Novotel

Taj Meriton

Hilton Jet Star Qantas EmiratesBudget
Motel

Figure 4: Conceptual Service Model and Instance Profiles

ing profiles are specialised to obtain a set of instance level
profiles, which are subsequently matched against r to iso-
late those service profiles M = {p1, . . . , pn} which indeed
offer the desired service. From instance-level profiles in
M , the set of matching services

⋃n
i=1 users(pi) is obtained

and concrete candidate workflows are instantiated. For ef-
ficiency, only the most preferred scenarios are considered,
based on the users’ preferences. As a result, a workflow
comprised only of concrete services is produced that may
directly be executed.

The composition approach has been partially imple-
mented in Cincom Visualworks/Smalltalk. The abstract
workflow modeller and composition viewer are both imple-
mented as extensions to Honeywell’s DOmain Modelling
Environment (DOME)1 which facilitates definition of arbi-
trary diagram notations on the basis of a meta class notation.

5. Example

We use the following business travel booking scenario to
demonstrate our composition approach. The requirements
for the business travel workflow are as follows.

Requirement 1 The following service requests ri, global
requirements G, and predefined control flow CF are the
requirements of our travel workflow.

r1: Make an airline booking starting from Adelaide on the
23/11/07 to Melbourne and do not spend more than

1http://www.cis.unisa.edu.au/∼cisgg/wiki/dome/
index.html

$200. The reliability of the service provider should at
least be 5.

r2: Make an hotel reservation for stay at Melbourne.
Checking in on 23/11/07, checking out on 24/11/07
and spend anywhere between $600 and $1000.

r3: Make an airline booking starting from Melbourne on
the 24/11/2007 to Adelaide and do not spend more
than $200. The reliability of the service provider
should at least be 5.

G: The overall costs should not exceed $700.

CF : If either s1 or s2 is not successful then do not perform
s3 and terminate the workflow.

The travel workflow requirements from above can be
modelled into an abstract workflow as shown in Figure 1.

We assume the environment shown in Figure 4 and as-
sume its state from Tables 1 and 2. The composition process
proceeds as follows:

1. The requirements given above are modelled into an
abstract workflow. The service requests r1, . . . , r3

are modelled as abstract services s1, . . . , s3 with in-
dividual requirements in OCL. The global require-
ment (overall costs) is modelled as a constraint at the
exit node of the workflow. The final abstract workflow
specification is shown in Figure 1.

2. Given the abstract workflow and the environment,
the composition process begins by propagating the
global constraint G over to ’Service #3’ (s3).

http://www.cis.unisa.edu.au/~cisgg/wiki/dome/index.html
http://www.cis.unisa.edu.au/~cisgg/wiki/dome/index.html

Service ID Service PM PS
1 Uni Lodge 101 101
2 YHA 90 90
3 Budget Motel 170 170
4 Park Inn 201 201
5 Rex 301 301
6 Bay View 501 501
7 Pacific 601 601
8 Hyatt 899 899
9 Taj 999 999
10 Novotel 849 849
11 Meriton 949 1099
12 Hilton 1199 1120

PM – Price at Melbourne, PS – Price at Sydney

Table 1: Hotel Reservation Services State: Ehotel

Service ID Instance A-M M-A S-A CL
13 Jet Star 115 51 201 6
14 Qantas 145 101 251 8
15 Emirates 175 121 301 9

A-M – Adelaide to Melbourne, M-A – Melbourne to
Adelaide, S-A – Sydney to Adelaide, CL – Credit Level

Table 2: Airline Services State: Eairline

Subsequently the two step matchmaking procedure
is invoked with requirements from s3. In the
first step, relevant conceptual-levels from the en-
vironment are shortlisted and the resultant set is
{DiscountAirlineBooking,EliteAirlineBooking}. In
the next step instance-level profiles that are speciali-
sations of previously shortlisted concept-level profiles
are further queried to determine a set of instance-level
profiles that indeed satisfy the requirements. The con-
crete services that use the determined instance-level
profiles are returned as matches for the given request.

3. The previous step is carried out on all the abstract ser-
vices by navigating backwards over transitions while
propagating the constraints.

4. For this example there are no compositions such that G
is satisfied. The user is notified that the requirements
are over-constrained (Figure 5a).

5. Assume that G is revised to The overall costs should
not exceed $800 G′.

6. A rerun of the composition process with the revised
constraints results in a set of concrete workflows or-
dered according to the total cost (see Figure 5b).

7. One of the concrete workflows can then be selected for
viewing (see Figure 5c).

6. Related Work

A model-based approach for the development of syntac-
tic service descriptions was proposed in [14]. The primary
contribution is an abstract service description approach that
is transparent to platform specific details. Representation of
complex semantics such as capabilities are not addressed.
In the approach presented here, service descriptions are
augmented with capability descriptions which are further
used within a composition framework while formulating
complex workflows.

UML activity diagrams are used as a starting point in [6]
to perform web service composition. Matches are de-
termined based on subsumption relationships between IO
types. It is likely that matchmaking of this kind could re-
sult in unintuitive matching where the returned services do
not provide the required functionality. Our work explicitly
considers complex semantics of a service within our com-
position framework.

A number of approaches that use logic reasoners [12, 8]
or other formalisms such as object-action semantics [13]
have been proposed. However, these approaches are only
able to check whether an advertisement may be relevant to
a request. These frameworks are vulnerable to ambiguity in
conceptual modelling and limitations of current inference
engines. In contrast, the two step matchmaking scheme
proposed here builds on techniques that have been proved
to handle large scale problems, while avoiding undesirable
aspects of concept-level reasoning.

7. Summary and Future Work

We presented a model-driven service composition ap-
proach powered by a semantic candidate selection scheme,
where concrete service orchestrations are synthesised from
abstract UML diagrams and OCL specifications of the de-
sired functionality. A two-phase semantic matching process
is employed, where concept-level reasoning is carried out to
isolate suitable candidate services, while instance-level rea-
soning provides precise filtering to isolate those service that
are indeed suitable. The resulting workflows are potentially
more precise than those obtained by concept-level reason-
ing alone. Flexible handling of differences in IO signatures
of similar services allows for adaption and refinement of
abstract and concrete workflows, allowing to automatically
react to failures observed at run-time. Widening the compo-
sition process to account for different types of requirements
specifications and refinement schemes, as well as extend-
ing investigating different approaches to incorporate user
preferences are among future research. While consider-
able progress has been achieved since the service oriented
paradigm was first introduced, the current state of the art is
far from satisfying the goals of the original vision. In partic-
ular, means to ease the service development process to en-

(a) Over-Constrained (b) Ranked Compositions (c) Concrete Workflow

Figure 5: Interactive Composition Process

sure that services are advertised suitable as well as queried
properly should be developed to aid further proliferation of
concrete implementations. The architecture presented in
this paper can be considered a first step towards leverag-
ing existing software engineering technologies to ease this
process.

References

[1] E. Al-Masri and Q. H. Mahmoud. Discovering the Best
Web Service. In Proceedings of the 16th International Con-
ference on the World Wide Web, pages 1257–1258, Banff,
Canada, May 2007.

[2] P. Albert, L. Henocque, and M. Kleiner. Configuration
Based Workflow Composition. In Proc. of ICWS 2005, July
2005.

[3] B. Beckert, U. Keller, and P. H. Schmitt. Translating the Ob-
ject Constraint Language into first-order predicate logic. In
Proceedings, VERIFY, Workshop at Federated Logic Con-
ferences (FLoC), Copenhagen, Denmark, 2002.

[4] T. B. et al. UDDI Version 3.0. Technical report, UDDI.org,
July 2002.

[5] B. Faltings and S. Macho-Gonzalez. Open constraint pro-
gramming. Artificial Intelligence, 161(1-2):181–208, 2005.

[6] R. Grønmo and M. C. Jaeger. Model-Driven Semantic Web
Service Composition. In APSEC05, pages 79–86, Dec.
2005.

[7] A. B. Hassine, S. Matsubara, and T. Ishida. A Constraint-
Based Approach to Horizontal Web Service Composition. In
Proceedings of the International Semantic Web Conference
(ISWC), Athens, GA, USA, Nov. 2006.

[8] L. Li and I. Horrocks. A software framework for matchmak-
ing based on Semantic Web technology. In Proc. of WWW
2003 Conf., pages 331–339, Budapest, May 2003.

[9] M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara.
Semantic matching of web services capabilities. In Proc.
ISWC, pages 333–347, Sardinia, Italy, June 2002.

[10] M. Stumptner, G. Friedrich, and A. Haselböck. Generative
constraint-based configuration of large technical systems. AI
EDAM, 12(4), Dec. 1998.

[11] R. Thiagarajan and M. Stumptner. A native ontology ap-
proach for semantic service descriptions. In Second Aus-
tralasian Ontology Workshop (AOW), volume 72 of CRPIT,
pages 85–90, Hobart, 2006. ACS.

[12] H. Wang and Z. Li. A Semantic Matchmaking Method of
Web Services Based On SHOIN+(D)∗. In Proceedings of
the IEEE Asia-Pacific Conference on Services Computing
(APSCC), pages 26–33, Guangzhou, China, Dec. 2006.

[13] L. Ye and B. Zhang. Discovering Web Services Based in
Functional Semantics. In Proceedings of the IEEE Asia-
Pacific Conference on Services Computing (APSCC), pages
348–355, Guangzhou, China, Dec. 2006.

[14] B. Yu, C. Zhang, and Y. Zhao. Transform from Models to
Service Description Based on MDA. In Proceedings of the
IEEE Asia-Pacific Conference on Services Computing (AP-
SCC), pages 605–608, Guangzhou, China, Dec. 2006.

	. Introduction
	. MDA and The Semantic Web
	. Consistency-based Service Discovery
	. Constraint-based Service Discovery
	. Example
	. Related Work
	. Summary and Future Work

