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Abstract

A considerable body of work on model-based software debugging (MBSD) has been
published in the past decade. We summarise the underlying ideas and present the
different approaches as abstractions of the concrete semantics of the programming
language. We compare the model-based framework with other well-known Au-
tomated Debugging approaches and present open issues, challenges and potential
future directions of MBSD.
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1 Introduction

Model-based software debugging (MBSD) is an application of Model-based
Diagnosis (MBD) techniques to debugging computer programs. Model-based
diagnosis was first introduced by [14] and subsequently refined by [34]. Diag-
nosis was initially focussed on locating faults in physical systems, in particular
faulty gates in electronic circuits. MBSD was first introduced by [11,5], with
the goal of identifying incorrect clauses in logic programs; the approach has
since been extended to different programming languages, including VHDL [16]
and Java [27]. Before describing the MBSD approach in detail, the underlying
principles of MBD are summarised.

The basic principle of MBD is to compare a model, a description of the
correct behaviour of a system, to the observed behaviour of the system. Tradi-
tional MBD systems receive the description of the observed behaviour through
direct measurements while the model is supplied by the system’s designer. The
difference between the behaviour anticipated by the model and the actual ob-
served behaviour is used to identify components that, when assumed to deviate
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from their normal behaviour, may explain the observed behaviour.

Translated to the software domain, substituting the program for the con-
crete system and observing its behaviour on a set of test cases seems possible.
This turns out to be difficult in practice, as a formal description of the correct
program is required to detect discrepancies. Current practice in software en-
gineering shows that formal models are rarely provided and if available, they
often suffer from maintenance problems where changes in the desired function-
ality of the program are not reflected in the formal models. Further, formal
models typically do not cover the complete behaviour of the system, but are
restricted to a particular property of the program.

The following section gives a brief introduction to the MBSD principles
and basic definitions. Sections 2.4–4 introduce different models taken from the
literature. Section 5 analyses the relationships between the models, followed
by a discussion of related work in Section 6. A number of potential future
developments of MBSD are raised in Section 7.

2 Model-based Software Debugging (MBSD)

The key idea of adapting MBD for debugging is to exchange the roles of the
model and the actual system: the model reflects the behaviour of the (in-
correct) program, while the test cases specify the correct result. Differences
between the values computed by the program and the specified results are used
to compute model elements that, when assumed to behave differently, explain
the observed misbehaviour. The program’s instructions are partitioned into
a set of model components which form the building blocks of explanations.
Each component can operate in normal mode, denoted ¬AB (·), where the
component functions as specified in the program, or in one or more ABnormal
modes, denoted AB (·), with different behaviour. Intuitively, each component
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mode corresponds to a particular modification of the program. 3 The model
components, a formal description of the semantics of the programming lan-
guage and a set of test cases are submitted to the conformance testing module
to determines if the program reflecting the fault assumptions is consistent with
the test cases. A program is found consistent with a test case specification if
the program possibly satisfies behaviour specified by the test case.

In case the program is found inconsistent, a set of components necessary
to derive the inconsistency is computed and passed to the MBSD engine. The
MBSD engine computes possible explanations in terms of mode assignments
to components and invokes the conformance testing module to determine if
the explanation is indeed valid. This process iterates until one (or all) possible
explanations have been found.

2.1 What is a Debugging Problem?

MBSD relies on test case specifications to determine if a set of fault represents
is a valid explanation. It is sufficient to assume that a nonempty set of test
cases is given, each test case describing the anticipated result for a test run
using specific input values.

Definition 2.1 A test case for a program P is a pair 〈In,Out〉 where In and
Out specify the input values and expected result of P .

Throughout this work, it is assumed that the set In completely specifies
the program’s initial state, whereas Out may be partially specified. 4 In the
following, In and Out denote both the assertions provided by a test case and
the set of states satisfying the assertions. Test cases can be generalised to
allow assertions at arbitrary labels.

Definition 2.2 A Debugging Problem is a tuple 〈P,T,C〉 where P is the
source text of the program under consideration, T is a set of test cases, and
C denotes the set of components derived from P .

The set C is a partition of all statements in P and are the building blocks
for explanations returned by the debugger. For simplicity of presentation, it
is assumed that there is a separate component for each program statement.

Example 2.3 The program in Figure 2 computes a linked list containing the
first n elements of the well-known Fibonacci sequence. The program is par-
titioned into ten components, each representing a statement. The expected
result at label end when run with input n = 5 is list 7→ [1, 1, 2, 3, 5]. Repre-
sented as an assertion, the desired result is

3 The main difference to Mutation Testing [32] is that our modifications to the program
are not necessarily executable, but may be at an abstract level subsuming multiple concrete
expressions.
4 The assumption may not be necessary for all models discussed herein. For the models
based on execution of the program, the initial state must be completely specified to obtain
a unique execution trace.
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class FibList {
int number;
FibList next;
FibList init(int n, FibList fl) {

1 number ← n;
2 next ← fl;
3 return this;

}
}

4 int a ← 1;
5 int b ← 0;
6 int list ← nil;
7 while (n > 0) {
8 b ← a + b;
9 a ← a - b; “correct is a ← b − a;”

10 list ← new FibList();
11 FibList ignore ← list.init(b, list);
12 n ← n − 1;

}
end

Fig. 2. Fibonacci program

assert@end list.value==1 && list.next.value==1
&& list.next.next.value==2 && list.next.next.next.value==3
&& list.next.next.next.next.value==5 && list.next.next.next.next.next==nil

The program contains a fault at label 9: a ←a−b is computed, causing the
incorrect result list 7→ [1, 1, 0,−1,−1].

2.2 The MBSD engine

To compute explanations once failing test execution has been detected, a
version of Reiter’s consistency-based diagnosis framework [34,17] is employed.
A set of fault assumptions ∆ =̂ {C1, . . . , Ck} is a valid explanation if the
model modified such that components Ci may exhibit deviating behaviour,
while the remaining components exhibit normal behaviour, no longer implies
incorrect behaviour.

Each fault assumption generated by the MBSD engine corresponds to a
modification of the program. A component C representing part of the original
program’s source code is replaced with a component C ′ that specifies a relaxed
form of C or does not specify any specific behaviour. 5

In case a failing test case is encountered, the MBSD engine determines
a set of program components (“conflict set”) necessary to imply the failure.
In the simplest form, a variant of Slicing [37] can be applied to compute the
set. In general algorithms such as the Resolution calculus or constraint-based
systems [23], are utilised to compute small conflicts. Using Reiter’s algorithm,
explanations are computed from conflicts.

2.3 Conformance testing

The conformance testing module decides whether a variant, P ′, of program P ,
conforms to the behaviour anticipated by the test case specifications. P ′ is
derived from P by applying fault assumption, ∆, obtained from the MBSD

5 Different models apply different strategies to determine the variables and fields affected
by an abnormal component. Here, it is implicitly assumed that only variables present in C
are affected. This restriction will be relaxed in Section 3.9.
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engine. Transformations of P into P ′ are model specific and are presented in
the following sections.

Definition 2.4 Fault assumption ∆ is consistent with a set T of test case
specifications if and only if for all test cases, it cannot be derived that all
program executions satisfying the model of the program (altered to reflect ∆)
violate the test case.

2.4 An optimal consistency-based model

Using symbolic execution of the program to decide if a program satisfies all
test specifications yields an optimal MBSD model. Unfortunately, this model
is not computable in general and approximations have to be introduced.

Example 2.5 The program in Figure 2 clearly violates the test case given
in example 2.3: the program computes value 0 for list.next.next.value, while
the assertion requires value 2 to be satisfied. From the execution trace it is
determined that all components except [return this]3 are necessary to derive
the incorrect value for the instance variables.

The MBSD engine subsequently creates fault candidates for each com-
ponent in the conflict and re-examines the test case. Assume component
[a← a− b]9 is selected and line 9 in the program is replaced with the more
general variant [a← �]9. The placeholder � is not part of the original pro-
gram syntax, but is introduced by the conformance tester and represents an
unknown expression.

The execution proceeds as before until label 9 is reached, and the value of
variable a is set to an (at this point unknown) value denoted by ξ1. The execu-
tion continues and ξ1 is stored in the newly created list node ([list← . . . ]10).
The loop iterates until the condition becomes false and program terminates
in a final state where list 7→ [ξ1, . . . , ξ5], with all ξi undetermined.

It is easy to see that the final state of the trace in example 2.5 is consistent
with the assertion given in example 2.3 if the ξi are assigned the values specified
in the assertion. Therefore, component 9 is a potential cause of the failing test
execution. Repeating this process for the remaining candidate explanations [·]1
to [·]12, all but [number← n]1, [b← a + b]8, [a← a− b]9, [list← new FibList]10
and [ignore← init(b,list)]11 are exonerated.

3 Dependency-based modelling

Models derived from dependencies between program statements were among
the first to be developed. Although the term “model-based software debug-
ging” had not been invented, the approach presented in Kuper’s thesis [26] was
based on similar ideas and could be considered model-based. Later, MBSD
was applied to Prolog programs [11,5] and to programs written in the hardware
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a0 ← 1 b0 ← 0 list0 ← null

a← a− b

b← a + b

n > 0

n← n− 1

list← new FibList

ignore← list.F ibList(b, list)

n1 heap1a1 b1 list1 ignore1

list0b0a0

n0

C4 C5 C6

ignore0

C7

¬AB (C4) → ok(a0)

¬AB (C5) → ok(b0)

¬AB (C6) → ok(list0)

¬AB (C7) ∧ ¬AB (C8) ∧ ¬AB (C9) ∧
¬AB (C12) ∧ ok(a0) ∧ ok(b0) ∧

ok(n0) → ok(v1) vi ∈ {a1, b1}
¬AB (C7) ∧ ¬AB (C12) ∧ ok(n0) → ok(n1)

¬AB (C7) ∧ ¬AB (C8) ∧ ¬AB (C9) ∧
¬AB (C10) ∧ ¬AB (C11) ∧

¬AB (C12) ∧ ok(a0) ∧ ok(b0) ∧
ok(n0) ∧ ok(list0) → ok(wi)

wi ∈ {list1, ignore1, heap1}

Fig. 3. Dependency model of the FibList program

description language VHDL [16,39], knowledge bases for automatic configura-
tion systems [15] and imperative and object oriented languages [27,38]. In the
following, the focus is on the work using Java.

Wieland’s thesis [38] presents three models for Java programs, each using
the same modelling language and reasoner but applying different model build-
ing strategies: The Execution Trace based Dependency Model (ETDM), 6 the
Detailed Dependency Model (DDM) and the Summarised Dependency Model
(SDM). The dependency models utilise a common model representation, while
differences between the models are found in the approximations of dependen-
cies and heap data structures.

3.1 Structural abstraction

Dependency models are constructed from dependencies between statements
in a program P , which has been transformed into Static Single Assignment
Form (SSA) [13]. The SSA form is a program representation where each vari-
able is assigned exactly once and computing dependencies between statements
becomes trivial.

A statement Si depends directly on a statement Sj if there exists an execu-
tion such that Sj precedes Si and the computation of the effect of Si requires
a value computed by Sj (“data dependency”), or the outcome of Sj may cause
Si to be (un)reachable (“control dependency”). This is sufficient for detect-
ing faults not involving the use of incorrect variables and will be relaxed in
Section 3.9. The model of an entire method is obtained by composing depen-
dencies of the method’s statements. The resulting dependencies are essentially
the same as dependencies obtained by applying a slicing algorithm [37,41].

Dependencies are transformed into a component-connection model, where
components correspond to program statements and connections correspond to

6 Throughout [38] the term “Functional Dependency” is used to refer to data flow and
control dependencies between statement. We prefer to use the single word “Dependency”
instead.
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dependencies between the statements. Each components C ∈ C has a set of
inputs in(C) and a set of outputs out(C), corresponding to all variables and
locations potentially used and modified by statements represented by C.

Example 3.1 Figure 3 depicts a graphical representation of the components
and connections created for the program in Figure 2. The loop structure has
been collapsed into a single component, with different dependencies between
input and output variables. For example, variable a1 depends on the values
of n0, a0, b0 and the fault assumptions of C7, C8 and C9. The computation of
these dependencies is discussed in more detail in the following section.

As the exact modelling of heap data structures depends on the models
used, the connections representing objects are omitted and represented as a
single connection, heap, instead.

3.2 Dependency representation

The component-connection model is compiled into sentences in propositional
logic, abstracting from the concrete semantics and concrete values. The model
only expresses whether the value of a variable v is correct, ok(v), or incorrect,
¬ok(v). The behaviour of a primitive component C is reduced to preserve
correctness if all its inputs in(C) = {vi1 , . . . , vim} provide correct values and C
is itself correct. In this case, the component’s outputs out(C) = {vj1 , . . . , vjn}
are also correct:

¬AB (C) ∧ ok(vi1) ∧ . . . ∧ ok(vim)→ ok(vj1) ∧ . . . ∧ ok(vjn).

Otherwise, C’s effect is potentially incorrect. Rules are formed such that
ok(vk) is not predicted by C for any potentially affected variable vk.

The model of the entire program is obtained by forming the conjunction
of all sentences. Abstractions of heap data structures, “locations”, are treated
similarly to variables. Further discussion of heap locations is provided in
sections 3.4–3.6.

3.3 Conflict extraction

To obtain the test outcome for a test T =̂ 〈I, O〉, the program is executed
and the values computed are compared with the ones specified in O. For
each variable vk, if the value obtained from the execution agrees with the
value specified in O, the corresponding model proposition ok(vk) is set to
true, otherwise the negated proposition is asserted. Assertions ok(vk) are
added for all variables vk specified in I, denoting that all inputs provided by
T are correct. The fault assumptions ∆ are introduced into the model though
literals AB(C), C ∈ C. For all remaining components C ′ ∈ C \∆, ¬AB(C ′)
is asserted.

To identify components explaining failed test assertions, a linear-time unit
resolution prover (LTUR) is applied by to derive inconsistencies between the
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Fig. 4. Heap abstractions for ETDM, DDM and SDM

logic representation of the model and the facts representing the test outcome.
A conflict has been found if there is a variable v where both ok(v) and ¬ok(v)
can be derived. The components contributing to the derivation of the two
conflicting literals form a conflict.

3.4 ETDM

The Execution Trace based Model (ETDM) is constructed from dependencies
between statements in a single execution of the (faulty) program P on the
inputs, I, specified by a test case. The program is run starting in state I and
the execution trace is subsequently transformed into SSA form and used as
the basis for the dependency computation. As only the single executed path
is considered, the model represents variables and dynamic data structures
precisely and ignores dependencies between statements that have not been
executed. The model is free of spurious dependencies, as only dependencies
which actually arise during execution are considered. Heap data structures
are treated as normal variables and do not require special consideration. The
drawback is that executing the program adds additional overhead for long-
running programs, as the program must be executed once for each test case.

Example 3.2 Figure 4 presents the heap abstractions at statement labelled 12
obtained for different models from the program and test case given in Sec-
tion 2.1. For each loop iteration, a separate location ιi, i ∈ {1, . . . , 5}, rep-
resenting an instance of type FibList is created. The values of all variables of
reference type are known precisely and no approximation is necessary.
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3.5 DDM

In contrast to the ETDM, the Detailed Dependency Model (DDM) does not
rely on program execution to build the model representation. Instead, static
analysis techniques are applied to analyse the program with respect to control
and data flow, including dynamically created data structures. All possible
executions must be considered.

The program is analysed in a preliminary step, partitioning the dynami-
cally allocated data structures into separate abstract locations.

Definition 3.3 A location represents one or more objects that are potentially
allocated by the program at runtime. A location potentially representing more
than a single object is a summary location. Each location contains type and
instance variables of the represented objects.

In Figure 4, locations potentially representing more than one object are
depicted with double borders.

Example 3.4 Using the simple heap analysis presented in [12] the following
heap partitions can be obtained from the program in Figure 2 at label 12
(Figure 4): both variables list and ignore reference the same unique object (an
instance of FibList). The value of the object’s next instance variable may be
nil, or may reference one of a number of different objects, represented as a
summary location. However, it is not known which object is referenced, nor
if the structure reachable through the next instance variable is cyclic or even
different from the object containing the reference. 7

In case a location corresponds to a single object, there is no difference to
the modelling of a regular variable. For summary locations, the logic repre-
sentation must be extended to account for the fact that it is not known which
object is being referenced. For a location ι? representing multiple concrete ob-
jects, ok(ι?) and ¬ok(ι?) may only be asserted if it is guaranteed that this fact
holds for all concrete objects represented by ι?. The model may contain spu-
rious dependencies due to ambiguity in control flow and due to approximation
of heap data structures during the preliminary analysis phase.

Example 3.5 The heap partitioning used in the DDM in Figure 4 is more
concise than the one used in the ETDM, as heap locations {ι1, . . . , ι4} are no
longer represented explicitly, but are summarised into a single proposition ι?.

The model is less demanding than the ETDM in memory and runtime, but
may lead to a larger number of potential explanations.

7 Advanced shape analysis approaches such as [35] exist that allow to deduce more infor-
mation, such as the shape of data structures and whether nodes are being referenced from
multiple locations.
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3.6 SDM

Large programs (several MB of source code) require even more abstract mod-
els to make debugging feasible. The Summarised Dependency Model (SDM)
further abstracts from the DDM and represents heap data structures as ab-
stract locations corresponding to the variables pointing to that location. The
model creates a single location that represents the entire data structure refer-
enced by each program variable. The coarse approximation of heap structures
allows more efficient reasoning, but introduces imprecision caused by aliasing
and summary locations. To provide a safe approximation, dependencies must
be added to ensure the model provides a safe abstraction.

Example 3.6 The heap abstraction of the SDM depicted in Figure 4 rep-
resents the dynamic data structures referred to by the two variables list and
ignore as two locations, ιlist and ιignore. Note that two abstract locations have
been created, both representing the same concrete objects. If the program
included an instruction modifying a location pointed-to by one of the two
variables, the dependency representation of the statement would have to be
amended to reflect the same modification to the other location.

3.7 Modelling hardware descriptions

[39] present a dependency-based model designed to locate faults in a subset of
the VHDL programming language. The semantics of VHDL are based on the
notion concurrent processes which may be triggered by changing activations
of signals and may in turn change the activation of other signals. Dependency
models of a VHDL program express concurrent processes as components and
the signals used and changed by each process as connections. Similar to the
DDM and the SDM, cyclic dependency graphs are collapsed into a single node.

Starting at signals observed to be incorrect (either through manual inspec-
tion or by using an automatic comparator tool [16]), the signals and processes
potentially contributing to an incorrect result are identified. Explanations
can be isolated effectively through combination of conflicts and through fault
models expressing faults commonly found in VHDL programs.

3.8 Plan-based modelling (PBM)

Kuper [26] introduces an interactive debugger for LISP programs, Debussi,
which is also based on dependencies between expressions. The model con-
structs a simple plan (essentially a dependency graph), representing the ex-
pressions and subexpressions computed during program execution and their
interdependencies. The reasoning strategy used to identify potentially incor-
rect expressions is based on constraint suspension [14] to exonerate conditional
expressions that cannot be responsible for a fault. Simple heuristics to exclude
unlikely explanations are used to filter candidate explanations.

Kuper follows a hierarchic, interactive process where the user is prompted
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to judge if a particular expression obtained at runtime is correct or not. Based
on the outcome the system eliminates explanations that conflict with the user’s
answer until a single explanation has been isolated. In case the identified
expression represents a function application, a new debugging problem using
the function’s body is spawned.

3.9 The Abstract Dependency-based Model (ADM)

The models discussed previously are able to locate faults that involve incorrect
expressions, but do not provide the means necessary to locate faults involv-
ing missing statements or assignments to wrong variables. To locate such
faults, complementary models not derived from the program are necessary.
Ideas introduced in [36,33] provide a first attempt at exploiting simple spec-
ifications [21] defining the relationships between input variables and result
variables of a method.

Indications of potential faults are obtained by comparing dependencies in-
duced by the program with dependencies obtained from the test case specifi-
cation. These hints are subsequently used to modify the program to contain �
tokens in the left hand side of assignment expressions. [33] use a constraint-
based approach to compute suitable sets of variables. The algorithm limits
the ADM to detecting and diagnosing missing dependencies.

4 The family of value-based models

While the dependency-based models presented in the previous section are
lightweight tools that can be applied efficiently even to large programs [16], for
object-oriented programs they often return many spurious diagnoses. Closer
analysis revealed that insufficient reasoning capabilities in the conformance
tester are the major contributor to false positives. In particular, the coarse
abstraction of the concrete semantics into abstract transitions computing ok(·)
and ¬ok(·) is too weak to determine that a particular candidate is inconsistent
and consistency must be assumed.

A possible remedy is to strengthen the model representation such that
conflicts can be derived in some of these cases, excluding spurious explana-
tions.This section surveys some of the approaches to strengthen the model rep-
resentations and conflict extraction procedures.For brevity, only differences to
the dependency models are described. As before, our focus is on Java models,
glossing over similar developments for VHDL programs [40].

4.1 The Value-based Model (VBM)

A direct extension to the dependency-based models was proposed in [27],
replacing the (¬)ok(·) literals with concrete values computed by the program.
The model computes concrete values (or no value in case not all required input
values are received). The model essentially simulates the program in case all
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¬AB (C4) → a0 = 1

¬AB (C5) → b0 = 0

¬AB (C6) → list0 = nil

¬AB (C7) ∧ ¬AB (C8) → bi = ai−1 + bi−1

¬AB (C7) ∧ ¬AB (C9) → ai = ai−1 − bi

¬AB (C7) ∧ ¬AB (C10) → listi = ιi ∧ (ιi fresh in heapi−1)

∀ι 6=ιi,kheap′i.ι.k = heapi−1.ι.k ∧ heap′i.ιi.value = 0 ∧ heap′i.ιi.next 7→ nil

¬AB (C7) ∧ ¬AB (C11) ∧ ¬AB (C1) → heapi.listi.value = bi ∧
∀ι 6=ιi,kheapi.ι.k = heap′i.ι.k

¬AB (C7) ∧ ¬AB (C11) ∧ ¬AB (C2) →∀ι 6=ιi,kheapi.ι.k = heap′i.ι.k ∧
heapi.listi.next = listi−1

¬AB (C7) ∧ ¬AB (C12) → ni = ni−1 + 1

Fig. 5. Logical model of the FibList program for the VBM

values necessary to compute a new value are known and does not predict
any value otherwise. Inconsistencies are derived when two differing values are
derived for the same model variable.

Example 4.1 Figure 5 presents the logical model derived from the program
in Figure 2. The loop is no longer represented as a single component, but
consists of a hierarchical structure containing models of the loop’s condition
and body. These in turn contain models describing the individual statements
and called methods. A literal a.b.c denotes instance variable c of object b in a
program state a. The model enforces the = operator only if the at least one of
the two expressions evaluates to a concrete value. Otherwise, the model does
not predict any value and thus assumes consistency.

Copies of the models of the loop’s body and condition are instantiated dy-
namically, depending on the outcome of a simulation of the condition’s model
for the preceding iteration. This process repeats until the model of the con-
dition does not imply true. If the condition implies false, the values of the
variables derived by the preceding model are unified with the loop compo-
nent’s outputs. Otherwise, the number of iterations cannot be determined
and the loop cannot predict values on its outputs. A formal description of
this propagation process is given in [27].

The VBM can effectively handle a variety of programs for which the
dependency-based models provide little advantage compared to slicing. For
data structures where different instance variables are processed by different
sections of the program, the heap-partitioned model provides much improved
explanations. However, soundness of the results depend on the absence of
variable faults on the left hand side of assignments. The key advantage of the
VBM compared to dependency-based models is its ability to approximate the
control flow of programs more precisely and to derive contradictions even for
branch-free executions.
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4.2 The Exception Model (EM)

The VBM is valid for programs with simple control flow, but is not expres-
sive enough to deal with arbitrary control flow such as structured exception
handling and non-local branches.

The EM removes this limitation by changing the model construction to
use the Static Single Information Form (SSI) [3], a bidirectional representa-
tion designed to support forward and backward reasoning. The translation of
the component model is extended to incorporate the elements introduced by
the SSI form, but remain otherwise unchanged compared to the plain VBM.

The conflict extractor can be described as follows: The model is repre-
sented as a flow-graph and is partitioned into regions with a single entry
point. In case an inconsistency is detected in a region, the entire region is
marked inconsistent and a different path must be followed. Once the region
containing the entry point of the program is marked inconsistent, there is no
consistent execution and the set of components associated with the outermost
region is returned as conflict.

4.3 The Abstract Interpretation-based Model (AIM)

An inherent problem common to most previously presented models is the
fact that the model must represent all possible executions of the program.
For object-oriented programs featuring polymorphism and side-effects, a con-
servative approximation of the call graph and data flow must be computed,
leading to potentially large models with tightly interconnected components.

The Abstract Interpretation-based Model AIM [28] shifts the modelling
approach from a static to a dynamic one, integrating the structural modelling
phase with the conflict extraction. The concrete semantics of the program is
replaced with an interval lattice to approximate program states that cannot
be determined precisely. Fault assumptions are applied to P and a model is
generated dynamically, constructing only the feasible paths. A sequence of
forward and backward analyses [6] is applied to eliminate paths that do not
lead to the results specified by the test cases. A conflict is detected if no
feasible path remains.

The modelling process is more efficient as only feasible execution paths are
generated. Faults involving assignments to the wrong variables can reliably
be detected and located.

4.4 The Predicate Abstraction-based Model (PAM)

[24] introduce a synthesis between Predicate Abstraction [4] and the VBM.
Whenever the plain VBM cannot derive a conflict, the PAM is applied to the
regions of the model where no values could be predicted. A conflict is returned
if a set of predicates can be derived that are sufficient to prove that the model
is inconsistent.
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While the abstraction refinement approach has been shown to perform
well for the purpose of verifying programs [9], the impact of under-specified
program elements introduced by fault assumptions on the refinement process
remains to be analysed in more detail.

4.5 The Heap Invariant Model (HIM)

The Heap Invariant Model (HIM) [8] utilises predicates representing invari-
ants of heap data structures. For example, a particular tree data structure
manipulated by the program should be acyclic at all times.

The HIM uses the plain VBM to simulate the program, keeping track of
the heap invariants. If an invariant is found to be violated, the model is traced
backward to find the component C which first introduces the violation. The
components implying that C is reached and the components implying C’s in-
puts are returned as conflict. Unfortunately, the description of the precise
algorithm proposed in [8] is rather vague, but it seems that the HIM can be
seen as a variant of the VBM model enhanced with simple predicate abstrac-
tion and heuristics for conflict minimisation.

4.6 The High-level Observation Model (HOM)

Ideas similar to those presented in the HIM and the AIM have been introduced
in [29]. The model provides improved precision and better conflict detection
by combining the interval lattice used in the AIM with a fixed set of predicates
modelling certain properties of program executions. The predicates together
with the AIM allow the conformance tester to build refined models that can
detect conflicts when the plain AIM or the abstract properties alone do not
provide useful information.

The HOM encompasses a catalogue of abstract properties, each associated
with a plain text description for interacting with the user. Properties repre-
sented by the HOM include among others: (i) variables and data structures
should (not) be modified between two points in the execution, (ii) data struc-
tures should always be (a)cyclic, or (iii) a loop should iterate over all elements
of a data structure. The benefit of such high-level specifications is twofold: (i)
any fault candidate violating the property is eliminated, and (ii) the confor-
mance tester can exploit those properties to build more precise models and to
better approximate the consistency test. The properties have been confirmed
to exclude a number of spurious but difficult to eliminate explanations on a
set of toy programs. Thorough evaluation on a larger set of programs remains
future work.

5 Comparing models

The models summarised in this work can be compared according to multiple
criteria. The following aspects may be of interest to determine if a particular
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model suits a given program:

• Precision: the fraction of spurious results returned as valid explanations.

• Completeness: is it guaranteed that the true fault is always included in the
explanations returned by the MBSD engine?

The first aspect is important from a practitioner’s point of view, as it is well-
known that users quickly lose confidence if many false explanations are re-
ported [43]. The relation ⊆∆ between models is used to compare results ob-
tained from different modelling approaches. Specifically, A ⊆∆ B denotes that
the set of program statements returned as possible explanations among all di-
agnoses ∆A obtained from approach A is a subset of the program statements
implicated by diagnoses ∆B obtained from B:

Definition 5.1

A ⊆∆ B ←→
⋃

S∈∆A

S ⊆
⋃

S′∈∆B

S ′

Model A implicates a subset (or the same set) of the statements model B
considers valid explanations and potentially returns fewer spurious explana-
tions than B. Throughout this section, it is assumed that models use the
same test case specifications, heap abstraction and program components.

5.1 The dependency-model hierarchy

The following relationships hold between the models presented in Section 3:

ETDM ⊆∆ DDM ⊆∆ SDM

Proof. Given that the models apply the same reasoning strategy and model
representation, it is sufficient to examine the heap abstraction and approxima-
tion of dependencies applied by each model. While the ETDM represents only
a single execution, the DDM safely approximates dependencies in all possible
executions. All dependencies modelled in the ETDM must be contained in the
DDM. It can be seen that the representation of dynamic data structures in
the DDM (SDM ) is derived from the ETDM (DDM) by aggregating heap lo-
cations and adding additional dependencies for summary locations. It follows
that the set of dependencies derived for the precise models are all included in
the abstract models.The more abstract model is a safe approximation of the
more precise model. It follows that whenever the precise model is consistent,
so is the abstract model. 2

Extending Kuper’s dependency-based model (PBM ) with support for dy-
namic data structures leads to a representation that is equivalent to either
the DDM or the SDM, depending on the heap abstraction. Extending Hunt’s
model the same way leads to a debugger giving similar results as program
dicing [1].
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The definitions of static and dynamic slices [37] give rise to the following
inclusions:

DICE ⊆∆ SSLICE ⊆∆ INSTR

DSLICE ⊆∆ EXEC ⊆∆ INSTR

DSLICE ⊆∆ SSLICE

INSTR and EXEC denote the set of all instructions and the set of executed
instructions in the program, respectively, and DICE, DSLICE and SSLICE
denote the instructions obtained from program dicing and dynamic and static
slicing, respectively.

It was shown in [41] that conflicts in dependency-based models are equiv-
alent to slices if no structural faults are present.

ETDM ⊆∆ DSLICE and DDM ⊆∆ SSLICE

where for the second inclusion it is required that the heap abstraction used to
compute SSLICE is not more precise than the one used in DDM.

If only a single variable is observed to be incorrect, dependency-modes lead
to the same results as slicing. When restricted to single fault explanations,
the explanations are precisely the ones contained in the intersection of the
individual slices for each incorrect variable [41]. Otherwise, the model-based
approaches can improve the results compared to purely slicing-based strategies
through the application of specific fault models for components.

Neither Slicing nor the dependency-based models are complete for general
faults. Both guarantee that a fault is included in the set of explanations in
case the fault is not masked, does not involve missing or additional statements
or assignments to wrong variables.

5.2 The VBM hierarchy

It is easy to see that the VBM is less precise than both the Loop-free model
(LFM) [30] and the PAM, as both models are specialisations of the VBM:

LFM ,PAM ⊆∆ VBM

Proof. Both the LFM and the PAM extend the VBM with additional con-
straints that restrict behavioural models of components.Extensions are ap-
plied when the VBM alone is consistent to refine the approximation of the
consistency test. It follows that the specialised models derive a superset of
all conflicts obtained from the plain VBM. Therefore, the VBM is consistent
whenever the specialised models are consistent. 2

AIM ⊆∆ EM ⊆∆ VBM
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Proof. The AIM can be seen as a dynamic unfolding of the EM, specialising
the control flow graph to a subset of the paths in case some paths cannot
be realised in a program state. The interval lattice is strictly more expressive
than the simple lattice used in the VBM. Therefore, the AIM has a potentially
larger set of control locations, each more specialised than the EM and anno-
tated with at least the amount of information as the EM provides. It follows
that consistency of the AIM model implies consistency of the EM model.

The EM also provides fewer explanations than the VBM: while the con-
formance tester applies the same lattice for both models, the EM can derive
inconsistencies more often due to superior region-based reasoning used for con-
ditionals. The formal proof is lengthier but can be established by induction
on the structure of the models. 2

HOM ⊆∆ AIM

Proof. The HOM is obtained from the AIM by replacing the interval lattice
with a reduced product [31] of the interval lattice and the abstract lattices
representing the abstractions modelled by the HOM. This implies that the
conformance tester of the HOM derives at least the same information for each
program state as the AIM. Therefore, all conflicts derived by the AIM can
be derived by the HOM and the AIM is consistent whenever the HOM is
consistent. According to Reiter’s hitting set algorithm [34], the diagnoses of
the HOM must be a subset of the AIM ’s result. 2

The ADM alone is not directly comparable to any of the previous models,
as dependencies are computed rather than used for modelling and no values
are being propagated.

ADM ⊆∆ INSTR

Proof. Trivial All explanations must consist of statements in the program.2

VBM ⊆1
∆ DSLICE

if the VBM is restricted to single fault diagnoses.

Proof. The VBM and all its variants precisely simulate the program be-
haviour when no fault assumptions are applied. A conflict Θ ⊆ DSLICE can
be derived by computing the dynamic slice of an incorrect variable. Accord-
ing to Reiter’s theory of diagnosis [34], all single fault diagnoses are elements
of Θ. For explanations comprising multiple components this result does not
holds, because the VBM may compute conflicts consisting of components not
in DSLICE. 2

The VBM provides better results than the ETDM when restricted to
single-component explanations:

VBM ⊆1
∆ ETDM .
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Proof. VBM’s single component explanations must be contained in DSLICE.
DSLICE contains precisely the statements necessary to compute an (incorrect)
value, and both models simulate the program when no fault assumptions are
present. The initial conflict derived by the VBM must be included in DSLICE ;
for the ETDM, the conflict is equivalent to DSLICE.

The conflict extractors used in the ETDM and the VBM both operate
on the same set of candidates in DSLICE. It can be shown that whenever
the ETDM eliminates an candidate, the VBM also eliminates the candidate:
conflicts for the ETDM correspond to model paths where all input variables
are represented as ok(·). In this case, the representation of the VBM can also
simulate the execution, as all required input values are known. Thus, whenever
the ETDM derives a conflict, the VBM can derive the same conflict. 2

Results for models using heuristics and unsafe approximations vary and
cannot be compared to most other models. It cannot be guaranteed that the
results obtained from ADM, DICE, HM, LFM or HIM are a superset if the
results obtained from PRECISE.

The remaining models use a safe approximation of the concrete semantics.
It follows that none of these models can provide better results than PRECISE
(which is not computable in general):

Theorem 5.2

PRECISE ⊆∆ M, M ∈ {HOM ,PAM }

The result for the other models follows by transitivity of ⊆∆.

Proof. Trivial, as models are safe approximations of PRECISE. 2

Figure 6 summarises the relationships between the different models.

All models except program dicing, the LFM, the HIM and Hunt’s models
are guaranteed to locate faults not involving structural faults. Most models
cannot reliably detect or locate faults involving missing or additional state-
ments, the use of wrong variables and other structural differences. The ADM,
AIM and HOM are guaranteed to locate and detect faults given a suitable
test case specification. Faults not manifested as failing test cases cannot be
detected by any MBSD approach.

6 Related work

An approach for debugging VHDL that in principle corresponds to dependency-
based MBSD is presented in [2]. Fault models are represented as multiplexer
components inserted into the original design, where the channel selector sig-
nals representing fault assumptions. Additional constraints limit the number
of faults permitted in valid explanations. The entire model is subsequently
transformed into propositional logic and solved using a SAT solver. The num-
ber of faults is increased and the process is repeated in case no solution is
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Fig. 6. Relationships between different models

found.

A fault simulation based approach is described in [20], where potential
explanations are identified by replacing signals with constants 0 or 1 to deter-
mine if a signal can potentially correct the circuit with respect to a given set
of test vectors. The number of possible combinations of signals to be tested
is reduced by exploiting the structural composition of the circuit. The con-
stants introduced for fault simulation can be seen as a strong fault models
that predict a constant instead of no value at all. Consequently, [20] require
two simulation runs, while the model-based approach requires only one. The
fault simulation based approach relies on intelligent pruning techniques to re-
duce the number of fault combinations to simulate instead of conflicts to build
explanations.

Delta Debugging (DD) [10] aims at isolating a root cause of a program
failure by minimising differences between a run that exhibits a fault (“failing
run”) and a similar one that does not (“passing run”). Differences between
program states at the same point in both executions are systematically ex-
plored and minimised, resulting in a single “root cause” explaining why the
program fails.

Injecting different values in the programs state can be seen as a special case
of fault models of a program statement. While DD uses values taken from a
different program execution, MBSD does not specify exact values. Instead,
generic placeholders (�) are used, causing the program simulator to follow all
possible paths that are consistent with the under-specified program state.

The causes presented by DD depend on the subsets of values that are
exchanged, and different subsets may lead to different causes. Also, not all
differences are equally interesting. It would be interesting to compare a gener-
alisation of DD with MBSD algorithms to see how the output relates to MBSD
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in case a larger number of explanations is returned. Conversely, MBSD suffers
from relatively high false positive rates, which does not seem to be the case
with DD.

Well-known verification techniques have recently been applied to not only
verify correctness, but also locate a fault [18]. The basic principle is to relate
abstract execution traces leading to correct and erroneous program states.
By focussing the search on traces that deviate only slightly from passing and
failing test cases, likely causes for a misbehaviour can be identified. [25] com-
pare the error trace-based strategy to MBSD and conclude that the former
is sensitive to variations of the search depth limit used to restrict the search.
Conversely, counterexamples may provide more information to the developer
provided the trace is short.

Another approach based on bounded model checking is presented in [7],
where a constraint solver is used to derive faulty abstract traces that differ
minimally from correct executions. In contrast to the approach outlined in
Section 4.4, the result is presented as the difference between traces and not as
locations within the program.

Error traces have also been applied to synthesise potential corrections of
faulty programs, given a specification of the program’s correct behaviour [19].
Symbolic evaluation is used to compare symbolic representations of program
states as computed by the program versus states necessary to satisfy the post
condition of the program. Differences in the predicates allow to heuristically
synthesise replacement expressions correcting single faults in the program.
The approach goes beyond what current approaches in MBSD can achieve, not
only pinpointing possible faults but also providing corrections automatically.
The downside is that a formal specification of the program’s behaviour is
required.

7 Challenges

Despite considerable progress in MBSD, many challenging issues remain to
be solved. Some of the aspects presented below are particular to the MBSD
approach, while others are instances of problems common to many different
automatic debugging techniques. We do not claim that the list is complete;
however, it reflects a number of issues we feel are important for the further
development of MBSD and automated debugging in general.

• How to avoid false positives? The main problem inherent to current MBSD
approaches seems to be a significant number of theoretically valid explana-
tions, which would be considered absurd by any reasonable developer. For
example, replacing the last instruction of a program with a function com-
puting the correct result and ignoring the rest of the program. A potential
remedy to filter such undesirable candidates is to combine MBSD with sym-
bolic approaches such as [19] to filter spurious explanations and estimate
the “size” of the replacement required for valid explanations. Filtering and
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ranking techniques, such as [43] and [22], may also be applicable.

• How to select appropriate models and fault assumption given a program
and test cases? Both the complexity of the debugging process and the
quality of the result directly depend on the selected model. [42] provides
a set of heuristics as a first step towards automatic model selection. It re-
mains an open issue if techniques developed for semi-automatic verification
of programs can be adapted and extended to suit the MBSD framework.

8 Conclusion

This work briefly introduces the idea of Model-based Software Debugging and
compares individual models. Relations between different models have been
studied, leading to a hierarchy of models with different diagnostic characteris-
tics. The comparison was focused on diagnostic strength of different models,
a more in-depth analysis quantifying the differences between models remains
for future work.
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